Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6805, 5273 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 6805, 5273 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 6805, 5273 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 6805, 5273 is 1.
HCF(6805, 5273) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 6805, 5273 is 1.
Step 1: Since 6805 > 5273, we apply the division lemma to 6805 and 5273, to get
6805 = 5273 x 1 + 1532
Step 2: Since the reminder 5273 ≠ 0, we apply division lemma to 1532 and 5273, to get
5273 = 1532 x 3 + 677
Step 3: We consider the new divisor 1532 and the new remainder 677, and apply the division lemma to get
1532 = 677 x 2 + 178
We consider the new divisor 677 and the new remainder 178,and apply the division lemma to get
677 = 178 x 3 + 143
We consider the new divisor 178 and the new remainder 143,and apply the division lemma to get
178 = 143 x 1 + 35
We consider the new divisor 143 and the new remainder 35,and apply the division lemma to get
143 = 35 x 4 + 3
We consider the new divisor 35 and the new remainder 3,and apply the division lemma to get
35 = 3 x 11 + 2
We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6805 and 5273 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(35,3) = HCF(143,35) = HCF(178,143) = HCF(677,178) = HCF(1532,677) = HCF(5273,1532) = HCF(6805,5273) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 6805, 5273?
Answer: HCF of 6805, 5273 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 6805, 5273 using Euclid's Algorithm?
Answer: For arbitrary numbers 6805, 5273 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.