Highest Common Factor of 682, 155 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 682, 155 i.e. 31 the largest integer that leaves a remainder zero for all numbers.

HCF of 682, 155 is 31 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 682, 155 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 682, 155 is 31.

HCF(682, 155) = 31

HCF of 682, 155 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 682, 155 is 31.

Highest Common Factor of 682,155 using Euclid's algorithm

Highest Common Factor of 682,155 is 31

Step 1: Since 682 > 155, we apply the division lemma to 682 and 155, to get

682 = 155 x 4 + 62

Step 2: Since the reminder 155 ≠ 0, we apply division lemma to 62 and 155, to get

155 = 62 x 2 + 31

Step 3: We consider the new divisor 62 and the new remainder 31, and apply the division lemma to get

62 = 31 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 31, the HCF of 682 and 155 is 31

Notice that 31 = HCF(62,31) = HCF(155,62) = HCF(682,155) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 682, 155 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 682, 155?

Answer: HCF of 682, 155 is 31 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 682, 155 using Euclid's Algorithm?

Answer: For arbitrary numbers 682, 155 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.