Highest Common Factor of 682, 5293 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 682, 5293 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 682, 5293 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 682, 5293 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 682, 5293 is 1.

HCF(682, 5293) = 1

HCF of 682, 5293 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 682, 5293 is 1.

Highest Common Factor of 682,5293 using Euclid's algorithm

Highest Common Factor of 682,5293 is 1

Step 1: Since 5293 > 682, we apply the division lemma to 5293 and 682, to get

5293 = 682 x 7 + 519

Step 2: Since the reminder 682 ≠ 0, we apply division lemma to 519 and 682, to get

682 = 519 x 1 + 163

Step 3: We consider the new divisor 519 and the new remainder 163, and apply the division lemma to get

519 = 163 x 3 + 30

We consider the new divisor 163 and the new remainder 30,and apply the division lemma to get

163 = 30 x 5 + 13

We consider the new divisor 30 and the new remainder 13,and apply the division lemma to get

30 = 13 x 2 + 4

We consider the new divisor 13 and the new remainder 4,and apply the division lemma to get

13 = 4 x 3 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 682 and 5293 is 1

Notice that 1 = HCF(4,1) = HCF(13,4) = HCF(30,13) = HCF(163,30) = HCF(519,163) = HCF(682,519) = HCF(5293,682) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 682, 5293 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 682, 5293?

Answer: HCF of 682, 5293 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 682, 5293 using Euclid's Algorithm?

Answer: For arbitrary numbers 682, 5293 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.