Highest Common Factor of 682, 981, 727 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 682, 981, 727 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 682, 981, 727 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 682, 981, 727 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 682, 981, 727 is 1.

HCF(682, 981, 727) = 1

HCF of 682, 981, 727 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 682, 981, 727 is 1.

Highest Common Factor of 682,981,727 using Euclid's algorithm

Highest Common Factor of 682,981,727 is 1

Step 1: Since 981 > 682, we apply the division lemma to 981 and 682, to get

981 = 682 x 1 + 299

Step 2: Since the reminder 682 ≠ 0, we apply division lemma to 299 and 682, to get

682 = 299 x 2 + 84

Step 3: We consider the new divisor 299 and the new remainder 84, and apply the division lemma to get

299 = 84 x 3 + 47

We consider the new divisor 84 and the new remainder 47,and apply the division lemma to get

84 = 47 x 1 + 37

We consider the new divisor 47 and the new remainder 37,and apply the division lemma to get

47 = 37 x 1 + 10

We consider the new divisor 37 and the new remainder 10,and apply the division lemma to get

37 = 10 x 3 + 7

We consider the new divisor 10 and the new remainder 7,and apply the division lemma to get

10 = 7 x 1 + 3

We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get

7 = 3 x 2 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 682 and 981 is 1

Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(10,7) = HCF(37,10) = HCF(47,37) = HCF(84,47) = HCF(299,84) = HCF(682,299) = HCF(981,682) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 727 > 1, we apply the division lemma to 727 and 1, to get

727 = 1 x 727 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 727 is 1

Notice that 1 = HCF(727,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 682, 981, 727 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 682, 981, 727?

Answer: HCF of 682, 981, 727 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 682, 981, 727 using Euclid's Algorithm?

Answer: For arbitrary numbers 682, 981, 727 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.