Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 683, 364 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 683, 364 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 683, 364 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 683, 364 is 1.
HCF(683, 364) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 683, 364 is 1.
Step 1: Since 683 > 364, we apply the division lemma to 683 and 364, to get
683 = 364 x 1 + 319
Step 2: Since the reminder 364 ≠ 0, we apply division lemma to 319 and 364, to get
364 = 319 x 1 + 45
Step 3: We consider the new divisor 319 and the new remainder 45, and apply the division lemma to get
319 = 45 x 7 + 4
We consider the new divisor 45 and the new remainder 4,and apply the division lemma to get
45 = 4 x 11 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 683 and 364 is 1
Notice that 1 = HCF(4,1) = HCF(45,4) = HCF(319,45) = HCF(364,319) = HCF(683,364) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 683, 364?
Answer: HCF of 683, 364 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 683, 364 using Euclid's Algorithm?
Answer: For arbitrary numbers 683, 364 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.