Highest Common Factor of 683, 87987 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 683, 87987 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 683, 87987 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 683, 87987 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 683, 87987 is 1.

HCF(683, 87987) = 1

HCF of 683, 87987 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 683, 87987 is 1.

Highest Common Factor of 683,87987 using Euclid's algorithm

Highest Common Factor of 683,87987 is 1

Step 1: Since 87987 > 683, we apply the division lemma to 87987 and 683, to get

87987 = 683 x 128 + 563

Step 2: Since the reminder 683 ≠ 0, we apply division lemma to 563 and 683, to get

683 = 563 x 1 + 120

Step 3: We consider the new divisor 563 and the new remainder 120, and apply the division lemma to get

563 = 120 x 4 + 83

We consider the new divisor 120 and the new remainder 83,and apply the division lemma to get

120 = 83 x 1 + 37

We consider the new divisor 83 and the new remainder 37,and apply the division lemma to get

83 = 37 x 2 + 9

We consider the new divisor 37 and the new remainder 9,and apply the division lemma to get

37 = 9 x 4 + 1

We consider the new divisor 9 and the new remainder 1,and apply the division lemma to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 683 and 87987 is 1

Notice that 1 = HCF(9,1) = HCF(37,9) = HCF(83,37) = HCF(120,83) = HCF(563,120) = HCF(683,563) = HCF(87987,683) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 683, 87987 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 683, 87987?

Answer: HCF of 683, 87987 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 683, 87987 using Euclid's Algorithm?

Answer: For arbitrary numbers 683, 87987 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.