Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 683, 964, 238 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 683, 964, 238 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 683, 964, 238 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 683, 964, 238 is 1.
HCF(683, 964, 238) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 683, 964, 238 is 1.
Step 1: Since 964 > 683, we apply the division lemma to 964 and 683, to get
964 = 683 x 1 + 281
Step 2: Since the reminder 683 ≠ 0, we apply division lemma to 281 and 683, to get
683 = 281 x 2 + 121
Step 3: We consider the new divisor 281 and the new remainder 121, and apply the division lemma to get
281 = 121 x 2 + 39
We consider the new divisor 121 and the new remainder 39,and apply the division lemma to get
121 = 39 x 3 + 4
We consider the new divisor 39 and the new remainder 4,and apply the division lemma to get
39 = 4 x 9 + 3
We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get
4 = 3 x 1 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 683 and 964 is 1
Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(39,4) = HCF(121,39) = HCF(281,121) = HCF(683,281) = HCF(964,683) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 238 > 1, we apply the division lemma to 238 and 1, to get
238 = 1 x 238 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 238 is 1
Notice that 1 = HCF(238,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 683, 964, 238?
Answer: HCF of 683, 964, 238 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 683, 964, 238 using Euclid's Algorithm?
Answer: For arbitrary numbers 683, 964, 238 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.