Highest Common Factor of 6835, 6467 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6835, 6467 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 6835, 6467 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 6835, 6467 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 6835, 6467 is 1.

HCF(6835, 6467) = 1

HCF of 6835, 6467 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 6835, 6467 is 1.

Highest Common Factor of 6835,6467 using Euclid's algorithm

Highest Common Factor of 6835,6467 is 1

Step 1: Since 6835 > 6467, we apply the division lemma to 6835 and 6467, to get

6835 = 6467 x 1 + 368

Step 2: Since the reminder 6467 ≠ 0, we apply division lemma to 368 and 6467, to get

6467 = 368 x 17 + 211

Step 3: We consider the new divisor 368 and the new remainder 211, and apply the division lemma to get

368 = 211 x 1 + 157

We consider the new divisor 211 and the new remainder 157,and apply the division lemma to get

211 = 157 x 1 + 54

We consider the new divisor 157 and the new remainder 54,and apply the division lemma to get

157 = 54 x 2 + 49

We consider the new divisor 54 and the new remainder 49,and apply the division lemma to get

54 = 49 x 1 + 5

We consider the new divisor 49 and the new remainder 5,and apply the division lemma to get

49 = 5 x 9 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6835 and 6467 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(49,5) = HCF(54,49) = HCF(157,54) = HCF(211,157) = HCF(368,211) = HCF(6467,368) = HCF(6835,6467) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 6835, 6467 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 6835, 6467?

Answer: HCF of 6835, 6467 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 6835, 6467 using Euclid's Algorithm?

Answer: For arbitrary numbers 6835, 6467 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.