Highest Common Factor of 684, 418, 208 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 684, 418, 208 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 684, 418, 208 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 684, 418, 208 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 684, 418, 208 is 2.

HCF(684, 418, 208) = 2

HCF of 684, 418, 208 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 684, 418, 208 is 2.

Highest Common Factor of 684,418,208 using Euclid's algorithm

Highest Common Factor of 684,418,208 is 2

Step 1: Since 684 > 418, we apply the division lemma to 684 and 418, to get

684 = 418 x 1 + 266

Step 2: Since the reminder 418 ≠ 0, we apply division lemma to 266 and 418, to get

418 = 266 x 1 + 152

Step 3: We consider the new divisor 266 and the new remainder 152, and apply the division lemma to get

266 = 152 x 1 + 114

We consider the new divisor 152 and the new remainder 114,and apply the division lemma to get

152 = 114 x 1 + 38

We consider the new divisor 114 and the new remainder 38,and apply the division lemma to get

114 = 38 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 38, the HCF of 684 and 418 is 38

Notice that 38 = HCF(114,38) = HCF(152,114) = HCF(266,152) = HCF(418,266) = HCF(684,418) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 208 > 38, we apply the division lemma to 208 and 38, to get

208 = 38 x 5 + 18

Step 2: Since the reminder 38 ≠ 0, we apply division lemma to 18 and 38, to get

38 = 18 x 2 + 2

Step 3: We consider the new divisor 18 and the new remainder 2, and apply the division lemma to get

18 = 2 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 38 and 208 is 2

Notice that 2 = HCF(18,2) = HCF(38,18) = HCF(208,38) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 684, 418, 208 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 684, 418, 208?

Answer: HCF of 684, 418, 208 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 684, 418, 208 using Euclid's Algorithm?

Answer: For arbitrary numbers 684, 418, 208 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.