Highest Common Factor of 684, 99033 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 684, 99033 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 684, 99033 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 684, 99033 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 684, 99033 is 3.

HCF(684, 99033) = 3

HCF of 684, 99033 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 684, 99033 is 3.

Highest Common Factor of 684,99033 using Euclid's algorithm

Highest Common Factor of 684,99033 is 3

Step 1: Since 99033 > 684, we apply the division lemma to 99033 and 684, to get

99033 = 684 x 144 + 537

Step 2: Since the reminder 684 ≠ 0, we apply division lemma to 537 and 684, to get

684 = 537 x 1 + 147

Step 3: We consider the new divisor 537 and the new remainder 147, and apply the division lemma to get

537 = 147 x 3 + 96

We consider the new divisor 147 and the new remainder 96,and apply the division lemma to get

147 = 96 x 1 + 51

We consider the new divisor 96 and the new remainder 51,and apply the division lemma to get

96 = 51 x 1 + 45

We consider the new divisor 51 and the new remainder 45,and apply the division lemma to get

51 = 45 x 1 + 6

We consider the new divisor 45 and the new remainder 6,and apply the division lemma to get

45 = 6 x 7 + 3

We consider the new divisor 6 and the new remainder 3,and apply the division lemma to get

6 = 3 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 684 and 99033 is 3

Notice that 3 = HCF(6,3) = HCF(45,6) = HCF(51,45) = HCF(96,51) = HCF(147,96) = HCF(537,147) = HCF(684,537) = HCF(99033,684) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 684, 99033 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 684, 99033?

Answer: HCF of 684, 99033 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 684, 99033 using Euclid's Algorithm?

Answer: For arbitrary numbers 684, 99033 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.