Highest Common Factor of 687, 432, 887, 522 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 687, 432, 887, 522 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 687, 432, 887, 522 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 687, 432, 887, 522 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 687, 432, 887, 522 is 1.

HCF(687, 432, 887, 522) = 1

HCF of 687, 432, 887, 522 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 687, 432, 887, 522 is 1.

Highest Common Factor of 687,432,887,522 using Euclid's algorithm

Highest Common Factor of 687,432,887,522 is 1

Step 1: Since 687 > 432, we apply the division lemma to 687 and 432, to get

687 = 432 x 1 + 255

Step 2: Since the reminder 432 ≠ 0, we apply division lemma to 255 and 432, to get

432 = 255 x 1 + 177

Step 3: We consider the new divisor 255 and the new remainder 177, and apply the division lemma to get

255 = 177 x 1 + 78

We consider the new divisor 177 and the new remainder 78,and apply the division lemma to get

177 = 78 x 2 + 21

We consider the new divisor 78 and the new remainder 21,and apply the division lemma to get

78 = 21 x 3 + 15

We consider the new divisor 21 and the new remainder 15,and apply the division lemma to get

21 = 15 x 1 + 6

We consider the new divisor 15 and the new remainder 6,and apply the division lemma to get

15 = 6 x 2 + 3

We consider the new divisor 6 and the new remainder 3,and apply the division lemma to get

6 = 3 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 687 and 432 is 3

Notice that 3 = HCF(6,3) = HCF(15,6) = HCF(21,15) = HCF(78,21) = HCF(177,78) = HCF(255,177) = HCF(432,255) = HCF(687,432) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 887 > 3, we apply the division lemma to 887 and 3, to get

887 = 3 x 295 + 2

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 2 and 3, to get

3 = 2 x 1 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 887 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(887,3) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 522 > 1, we apply the division lemma to 522 and 1, to get

522 = 1 x 522 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 522 is 1

Notice that 1 = HCF(522,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 687, 432, 887, 522 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 687, 432, 887, 522?

Answer: HCF of 687, 432, 887, 522 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 687, 432, 887, 522 using Euclid's Algorithm?

Answer: For arbitrary numbers 687, 432, 887, 522 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.