Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 687, 58481 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 687, 58481 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 687, 58481 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 687, 58481 is 1.
HCF(687, 58481) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 687, 58481 is 1.
Step 1: Since 58481 > 687, we apply the division lemma to 58481 and 687, to get
58481 = 687 x 85 + 86
Step 2: Since the reminder 687 ≠ 0, we apply division lemma to 86 and 687, to get
687 = 86 x 7 + 85
Step 3: We consider the new divisor 86 and the new remainder 85, and apply the division lemma to get
86 = 85 x 1 + 1
We consider the new divisor 85 and the new remainder 1, and apply the division lemma to get
85 = 1 x 85 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 687 and 58481 is 1
Notice that 1 = HCF(85,1) = HCF(86,85) = HCF(687,86) = HCF(58481,687) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 687, 58481?
Answer: HCF of 687, 58481 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 687, 58481 using Euclid's Algorithm?
Answer: For arbitrary numbers 687, 58481 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.