Highest Common Factor of 6933, 4342, 88092 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6933, 4342, 88092 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 6933, 4342, 88092 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 6933, 4342, 88092 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 6933, 4342, 88092 is 1.

HCF(6933, 4342, 88092) = 1

HCF of 6933, 4342, 88092 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 6933, 4342, 88092 is 1.

Highest Common Factor of 6933,4342,88092 using Euclid's algorithm

Highest Common Factor of 6933,4342,88092 is 1

Step 1: Since 6933 > 4342, we apply the division lemma to 6933 and 4342, to get

6933 = 4342 x 1 + 2591

Step 2: Since the reminder 4342 ≠ 0, we apply division lemma to 2591 and 4342, to get

4342 = 2591 x 1 + 1751

Step 3: We consider the new divisor 2591 and the new remainder 1751, and apply the division lemma to get

2591 = 1751 x 1 + 840

We consider the new divisor 1751 and the new remainder 840,and apply the division lemma to get

1751 = 840 x 2 + 71

We consider the new divisor 840 and the new remainder 71,and apply the division lemma to get

840 = 71 x 11 + 59

We consider the new divisor 71 and the new remainder 59,and apply the division lemma to get

71 = 59 x 1 + 12

We consider the new divisor 59 and the new remainder 12,and apply the division lemma to get

59 = 12 x 4 + 11

We consider the new divisor 12 and the new remainder 11,and apply the division lemma to get

12 = 11 x 1 + 1

We consider the new divisor 11 and the new remainder 1,and apply the division lemma to get

11 = 1 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6933 and 4342 is 1

Notice that 1 = HCF(11,1) = HCF(12,11) = HCF(59,12) = HCF(71,59) = HCF(840,71) = HCF(1751,840) = HCF(2591,1751) = HCF(4342,2591) = HCF(6933,4342) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 88092 > 1, we apply the division lemma to 88092 and 1, to get

88092 = 1 x 88092 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 88092 is 1

Notice that 1 = HCF(88092,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 6933, 4342, 88092 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 6933, 4342, 88092?

Answer: HCF of 6933, 4342, 88092 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 6933, 4342, 88092 using Euclid's Algorithm?

Answer: For arbitrary numbers 6933, 4342, 88092 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.