Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6939, 8213 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 6939, 8213 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 6939, 8213 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 6939, 8213 is 1.
HCF(6939, 8213) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 6939, 8213 is 1.
Step 1: Since 8213 > 6939, we apply the division lemma to 8213 and 6939, to get
8213 = 6939 x 1 + 1274
Step 2: Since the reminder 6939 ≠ 0, we apply division lemma to 1274 and 6939, to get
6939 = 1274 x 5 + 569
Step 3: We consider the new divisor 1274 and the new remainder 569, and apply the division lemma to get
1274 = 569 x 2 + 136
We consider the new divisor 569 and the new remainder 136,and apply the division lemma to get
569 = 136 x 4 + 25
We consider the new divisor 136 and the new remainder 25,and apply the division lemma to get
136 = 25 x 5 + 11
We consider the new divisor 25 and the new remainder 11,and apply the division lemma to get
25 = 11 x 2 + 3
We consider the new divisor 11 and the new remainder 3,and apply the division lemma to get
11 = 3 x 3 + 2
We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6939 and 8213 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(11,3) = HCF(25,11) = HCF(136,25) = HCF(569,136) = HCF(1274,569) = HCF(6939,1274) = HCF(8213,6939) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 6939, 8213?
Answer: HCF of 6939, 8213 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 6939, 8213 using Euclid's Algorithm?
Answer: For arbitrary numbers 6939, 8213 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.