Highest Common Factor of 694, 20679 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 694, 20679 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 694, 20679 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 694, 20679 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 694, 20679 is 1.

HCF(694, 20679) = 1

HCF of 694, 20679 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 694, 20679 is 1.

Highest Common Factor of 694,20679 using Euclid's algorithm

Highest Common Factor of 694,20679 is 1

Step 1: Since 20679 > 694, we apply the division lemma to 20679 and 694, to get

20679 = 694 x 29 + 553

Step 2: Since the reminder 694 ≠ 0, we apply division lemma to 553 and 694, to get

694 = 553 x 1 + 141

Step 3: We consider the new divisor 553 and the new remainder 141, and apply the division lemma to get

553 = 141 x 3 + 130

We consider the new divisor 141 and the new remainder 130,and apply the division lemma to get

141 = 130 x 1 + 11

We consider the new divisor 130 and the new remainder 11,and apply the division lemma to get

130 = 11 x 11 + 9

We consider the new divisor 11 and the new remainder 9,and apply the division lemma to get

11 = 9 x 1 + 2

We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get

9 = 2 x 4 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 694 and 20679 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(11,9) = HCF(130,11) = HCF(141,130) = HCF(553,141) = HCF(694,553) = HCF(20679,694) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 694, 20679 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 694, 20679?

Answer: HCF of 694, 20679 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 694, 20679 using Euclid's Algorithm?

Answer: For arbitrary numbers 694, 20679 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.