Highest Common Factor of 695, 397, 212, 228 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 695, 397, 212, 228 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 695, 397, 212, 228 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 695, 397, 212, 228 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 695, 397, 212, 228 is 1.

HCF(695, 397, 212, 228) = 1

HCF of 695, 397, 212, 228 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 695, 397, 212, 228 is 1.

Highest Common Factor of 695,397,212,228 using Euclid's algorithm

Highest Common Factor of 695,397,212,228 is 1

Step 1: Since 695 > 397, we apply the division lemma to 695 and 397, to get

695 = 397 x 1 + 298

Step 2: Since the reminder 397 ≠ 0, we apply division lemma to 298 and 397, to get

397 = 298 x 1 + 99

Step 3: We consider the new divisor 298 and the new remainder 99, and apply the division lemma to get

298 = 99 x 3 + 1

We consider the new divisor 99 and the new remainder 1, and apply the division lemma to get

99 = 1 x 99 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 695 and 397 is 1

Notice that 1 = HCF(99,1) = HCF(298,99) = HCF(397,298) = HCF(695,397) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 212 > 1, we apply the division lemma to 212 and 1, to get

212 = 1 x 212 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 212 is 1

Notice that 1 = HCF(212,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 228 > 1, we apply the division lemma to 228 and 1, to get

228 = 1 x 228 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 228 is 1

Notice that 1 = HCF(228,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 695, 397, 212, 228 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 695, 397, 212, 228?

Answer: HCF of 695, 397, 212, 228 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 695, 397, 212, 228 using Euclid's Algorithm?

Answer: For arbitrary numbers 695, 397, 212, 228 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.