Highest Common Factor of 698, 429, 704 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 698, 429, 704 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 698, 429, 704 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 698, 429, 704 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 698, 429, 704 is 1.

HCF(698, 429, 704) = 1

HCF of 698, 429, 704 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 698, 429, 704 is 1.

Highest Common Factor of 698,429,704 using Euclid's algorithm

Highest Common Factor of 698,429,704 is 1

Step 1: Since 698 > 429, we apply the division lemma to 698 and 429, to get

698 = 429 x 1 + 269

Step 2: Since the reminder 429 ≠ 0, we apply division lemma to 269 and 429, to get

429 = 269 x 1 + 160

Step 3: We consider the new divisor 269 and the new remainder 160, and apply the division lemma to get

269 = 160 x 1 + 109

We consider the new divisor 160 and the new remainder 109,and apply the division lemma to get

160 = 109 x 1 + 51

We consider the new divisor 109 and the new remainder 51,and apply the division lemma to get

109 = 51 x 2 + 7

We consider the new divisor 51 and the new remainder 7,and apply the division lemma to get

51 = 7 x 7 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 698 and 429 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(51,7) = HCF(109,51) = HCF(160,109) = HCF(269,160) = HCF(429,269) = HCF(698,429) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 704 > 1, we apply the division lemma to 704 and 1, to get

704 = 1 x 704 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 704 is 1

Notice that 1 = HCF(704,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 698, 429, 704 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 698, 429, 704?

Answer: HCF of 698, 429, 704 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 698, 429, 704 using Euclid's Algorithm?

Answer: For arbitrary numbers 698, 429, 704 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.