Highest Common Factor of 699, 404, 151 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 699, 404, 151 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 699, 404, 151 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 699, 404, 151 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 699, 404, 151 is 1.

HCF(699, 404, 151) = 1

HCF of 699, 404, 151 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 699, 404, 151 is 1.

Highest Common Factor of 699,404,151 using Euclid's algorithm

Highest Common Factor of 699,404,151 is 1

Step 1: Since 699 > 404, we apply the division lemma to 699 and 404, to get

699 = 404 x 1 + 295

Step 2: Since the reminder 404 ≠ 0, we apply division lemma to 295 and 404, to get

404 = 295 x 1 + 109

Step 3: We consider the new divisor 295 and the new remainder 109, and apply the division lemma to get

295 = 109 x 2 + 77

We consider the new divisor 109 and the new remainder 77,and apply the division lemma to get

109 = 77 x 1 + 32

We consider the new divisor 77 and the new remainder 32,and apply the division lemma to get

77 = 32 x 2 + 13

We consider the new divisor 32 and the new remainder 13,and apply the division lemma to get

32 = 13 x 2 + 6

We consider the new divisor 13 and the new remainder 6,and apply the division lemma to get

13 = 6 x 2 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 699 and 404 is 1

Notice that 1 = HCF(6,1) = HCF(13,6) = HCF(32,13) = HCF(77,32) = HCF(109,77) = HCF(295,109) = HCF(404,295) = HCF(699,404) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 151 > 1, we apply the division lemma to 151 and 1, to get

151 = 1 x 151 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 151 is 1

Notice that 1 = HCF(151,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 699, 404, 151 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 699, 404, 151?

Answer: HCF of 699, 404, 151 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 699, 404, 151 using Euclid's Algorithm?

Answer: For arbitrary numbers 699, 404, 151 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.