Highest Common Factor of 70, 322, 887, 415 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 70, 322, 887, 415 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 70, 322, 887, 415 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 70, 322, 887, 415 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 70, 322, 887, 415 is 1.

HCF(70, 322, 887, 415) = 1

HCF of 70, 322, 887, 415 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 70, 322, 887, 415 is 1.

Highest Common Factor of 70,322,887,415 using Euclid's algorithm

Highest Common Factor of 70,322,887,415 is 1

Step 1: Since 322 > 70, we apply the division lemma to 322 and 70, to get

322 = 70 x 4 + 42

Step 2: Since the reminder 70 ≠ 0, we apply division lemma to 42 and 70, to get

70 = 42 x 1 + 28

Step 3: We consider the new divisor 42 and the new remainder 28, and apply the division lemma to get

42 = 28 x 1 + 14

We consider the new divisor 28 and the new remainder 14, and apply the division lemma to get

28 = 14 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 14, the HCF of 70 and 322 is 14

Notice that 14 = HCF(28,14) = HCF(42,28) = HCF(70,42) = HCF(322,70) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 887 > 14, we apply the division lemma to 887 and 14, to get

887 = 14 x 63 + 5

Step 2: Since the reminder 14 ≠ 0, we apply division lemma to 5 and 14, to get

14 = 5 x 2 + 4

Step 3: We consider the new divisor 5 and the new remainder 4, and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1, and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 14 and 887 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(14,5) = HCF(887,14) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 415 > 1, we apply the division lemma to 415 and 1, to get

415 = 1 x 415 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 415 is 1

Notice that 1 = HCF(415,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 70, 322, 887, 415 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 70, 322, 887, 415?

Answer: HCF of 70, 322, 887, 415 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 70, 322, 887, 415 using Euclid's Algorithm?

Answer: For arbitrary numbers 70, 322, 887, 415 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.