Highest Common Factor of 70, 84, 93, 469 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 70, 84, 93, 469 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 70, 84, 93, 469 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 70, 84, 93, 469 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 70, 84, 93, 469 is 1.

HCF(70, 84, 93, 469) = 1

HCF of 70, 84, 93, 469 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 70, 84, 93, 469 is 1.

Highest Common Factor of 70,84,93,469 using Euclid's algorithm

Highest Common Factor of 70,84,93,469 is 1

Step 1: Since 84 > 70, we apply the division lemma to 84 and 70, to get

84 = 70 x 1 + 14

Step 2: Since the reminder 70 ≠ 0, we apply division lemma to 14 and 70, to get

70 = 14 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 14, the HCF of 70 and 84 is 14

Notice that 14 = HCF(70,14) = HCF(84,70) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 93 > 14, we apply the division lemma to 93 and 14, to get

93 = 14 x 6 + 9

Step 2: Since the reminder 14 ≠ 0, we apply division lemma to 9 and 14, to get

14 = 9 x 1 + 5

Step 3: We consider the new divisor 9 and the new remainder 5, and apply the division lemma to get

9 = 5 x 1 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 14 and 93 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(9,5) = HCF(14,9) = HCF(93,14) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 469 > 1, we apply the division lemma to 469 and 1, to get

469 = 1 x 469 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 469 is 1

Notice that 1 = HCF(469,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 70, 84, 93, 469 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 70, 84, 93, 469?

Answer: HCF of 70, 84, 93, 469 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 70, 84, 93, 469 using Euclid's Algorithm?

Answer: For arbitrary numbers 70, 84, 93, 469 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.