Highest Common Factor of 7029, 3436, 88468 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7029, 3436, 88468 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 7029, 3436, 88468 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7029, 3436, 88468 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7029, 3436, 88468 is 1.

HCF(7029, 3436, 88468) = 1

HCF of 7029, 3436, 88468 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7029, 3436, 88468 is 1.

Highest Common Factor of 7029,3436,88468 using Euclid's algorithm

Highest Common Factor of 7029,3436,88468 is 1

Step 1: Since 7029 > 3436, we apply the division lemma to 7029 and 3436, to get

7029 = 3436 x 2 + 157

Step 2: Since the reminder 3436 ≠ 0, we apply division lemma to 157 and 3436, to get

3436 = 157 x 21 + 139

Step 3: We consider the new divisor 157 and the new remainder 139, and apply the division lemma to get

157 = 139 x 1 + 18

We consider the new divisor 139 and the new remainder 18,and apply the division lemma to get

139 = 18 x 7 + 13

We consider the new divisor 18 and the new remainder 13,and apply the division lemma to get

18 = 13 x 1 + 5

We consider the new divisor 13 and the new remainder 5,and apply the division lemma to get

13 = 5 x 2 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7029 and 3436 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(13,5) = HCF(18,13) = HCF(139,18) = HCF(157,139) = HCF(3436,157) = HCF(7029,3436) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 88468 > 1, we apply the division lemma to 88468 and 1, to get

88468 = 1 x 88468 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 88468 is 1

Notice that 1 = HCF(88468,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 7029, 3436, 88468 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7029, 3436, 88468?

Answer: HCF of 7029, 3436, 88468 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7029, 3436, 88468 using Euclid's Algorithm?

Answer: For arbitrary numbers 7029, 3436, 88468 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.