Highest Common Factor of 7029, 8689, 78935 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7029, 8689, 78935 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 7029, 8689, 78935 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7029, 8689, 78935 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7029, 8689, 78935 is 1.

HCF(7029, 8689, 78935) = 1

HCF of 7029, 8689, 78935 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7029, 8689, 78935 is 1.

Highest Common Factor of 7029,8689,78935 using Euclid's algorithm

Highest Common Factor of 7029,8689,78935 is 1

Step 1: Since 8689 > 7029, we apply the division lemma to 8689 and 7029, to get

8689 = 7029 x 1 + 1660

Step 2: Since the reminder 7029 ≠ 0, we apply division lemma to 1660 and 7029, to get

7029 = 1660 x 4 + 389

Step 3: We consider the new divisor 1660 and the new remainder 389, and apply the division lemma to get

1660 = 389 x 4 + 104

We consider the new divisor 389 and the new remainder 104,and apply the division lemma to get

389 = 104 x 3 + 77

We consider the new divisor 104 and the new remainder 77,and apply the division lemma to get

104 = 77 x 1 + 27

We consider the new divisor 77 and the new remainder 27,and apply the division lemma to get

77 = 27 x 2 + 23

We consider the new divisor 27 and the new remainder 23,and apply the division lemma to get

27 = 23 x 1 + 4

We consider the new divisor 23 and the new remainder 4,and apply the division lemma to get

23 = 4 x 5 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7029 and 8689 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(23,4) = HCF(27,23) = HCF(77,27) = HCF(104,77) = HCF(389,104) = HCF(1660,389) = HCF(7029,1660) = HCF(8689,7029) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 78935 > 1, we apply the division lemma to 78935 and 1, to get

78935 = 1 x 78935 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 78935 is 1

Notice that 1 = HCF(78935,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 7029, 8689, 78935 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7029, 8689, 78935?

Answer: HCF of 7029, 8689, 78935 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7029, 8689, 78935 using Euclid's Algorithm?

Answer: For arbitrary numbers 7029, 8689, 78935 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.