Highest Common Factor of 703, 4016, 9365 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 703, 4016, 9365 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 703, 4016, 9365 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 703, 4016, 9365 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 703, 4016, 9365 is 1.

HCF(703, 4016, 9365) = 1

HCF of 703, 4016, 9365 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 703, 4016, 9365 is 1.

Highest Common Factor of 703,4016,9365 using Euclid's algorithm

Highest Common Factor of 703,4016,9365 is 1

Step 1: Since 4016 > 703, we apply the division lemma to 4016 and 703, to get

4016 = 703 x 5 + 501

Step 2: Since the reminder 703 ≠ 0, we apply division lemma to 501 and 703, to get

703 = 501 x 1 + 202

Step 3: We consider the new divisor 501 and the new remainder 202, and apply the division lemma to get

501 = 202 x 2 + 97

We consider the new divisor 202 and the new remainder 97,and apply the division lemma to get

202 = 97 x 2 + 8

We consider the new divisor 97 and the new remainder 8,and apply the division lemma to get

97 = 8 x 12 + 1

We consider the new divisor 8 and the new remainder 1,and apply the division lemma to get

8 = 1 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 703 and 4016 is 1

Notice that 1 = HCF(8,1) = HCF(97,8) = HCF(202,97) = HCF(501,202) = HCF(703,501) = HCF(4016,703) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 9365 > 1, we apply the division lemma to 9365 and 1, to get

9365 = 1 x 9365 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 9365 is 1

Notice that 1 = HCF(9365,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 703, 4016, 9365 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 703, 4016, 9365?

Answer: HCF of 703, 4016, 9365 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 703, 4016, 9365 using Euclid's Algorithm?

Answer: For arbitrary numbers 703, 4016, 9365 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.