Highest Common Factor of 703, 413 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 703, 413 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 703, 413 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 703, 413 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 703, 413 is 1.

HCF(703, 413) = 1

HCF of 703, 413 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 703, 413 is 1.

Highest Common Factor of 703,413 using Euclid's algorithm

Highest Common Factor of 703,413 is 1

Step 1: Since 703 > 413, we apply the division lemma to 703 and 413, to get

703 = 413 x 1 + 290

Step 2: Since the reminder 413 ≠ 0, we apply division lemma to 290 and 413, to get

413 = 290 x 1 + 123

Step 3: We consider the new divisor 290 and the new remainder 123, and apply the division lemma to get

290 = 123 x 2 + 44

We consider the new divisor 123 and the new remainder 44,and apply the division lemma to get

123 = 44 x 2 + 35

We consider the new divisor 44 and the new remainder 35,and apply the division lemma to get

44 = 35 x 1 + 9

We consider the new divisor 35 and the new remainder 9,and apply the division lemma to get

35 = 9 x 3 + 8

We consider the new divisor 9 and the new remainder 8,and apply the division lemma to get

9 = 8 x 1 + 1

We consider the new divisor 8 and the new remainder 1,and apply the division lemma to get

8 = 1 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 703 and 413 is 1

Notice that 1 = HCF(8,1) = HCF(9,8) = HCF(35,9) = HCF(44,35) = HCF(123,44) = HCF(290,123) = HCF(413,290) = HCF(703,413) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 703, 413 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 703, 413?

Answer: HCF of 703, 413 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 703, 413 using Euclid's Algorithm?

Answer: For arbitrary numbers 703, 413 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.