Highest Common Factor of 703, 545, 13 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 703, 545, 13 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 703, 545, 13 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 703, 545, 13 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 703, 545, 13 is 1.

HCF(703, 545, 13) = 1

HCF of 703, 545, 13 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 703, 545, 13 is 1.

Highest Common Factor of 703,545,13 using Euclid's algorithm

Highest Common Factor of 703,545,13 is 1

Step 1: Since 703 > 545, we apply the division lemma to 703 and 545, to get

703 = 545 x 1 + 158

Step 2: Since the reminder 545 ≠ 0, we apply division lemma to 158 and 545, to get

545 = 158 x 3 + 71

Step 3: We consider the new divisor 158 and the new remainder 71, and apply the division lemma to get

158 = 71 x 2 + 16

We consider the new divisor 71 and the new remainder 16,and apply the division lemma to get

71 = 16 x 4 + 7

We consider the new divisor 16 and the new remainder 7,and apply the division lemma to get

16 = 7 x 2 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 703 and 545 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(16,7) = HCF(71,16) = HCF(158,71) = HCF(545,158) = HCF(703,545) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 13 > 1, we apply the division lemma to 13 and 1, to get

13 = 1 x 13 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 13 is 1

Notice that 1 = HCF(13,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 703, 545, 13 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 703, 545, 13?

Answer: HCF of 703, 545, 13 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 703, 545, 13 using Euclid's Algorithm?

Answer: For arbitrary numbers 703, 545, 13 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.