Highest Common Factor of 7031, 2442 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7031, 2442 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 7031, 2442 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7031, 2442 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7031, 2442 is 1.

HCF(7031, 2442) = 1

HCF of 7031, 2442 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7031, 2442 is 1.

Highest Common Factor of 7031,2442 using Euclid's algorithm

Highest Common Factor of 7031,2442 is 1

Step 1: Since 7031 > 2442, we apply the division lemma to 7031 and 2442, to get

7031 = 2442 x 2 + 2147

Step 2: Since the reminder 2442 ≠ 0, we apply division lemma to 2147 and 2442, to get

2442 = 2147 x 1 + 295

Step 3: We consider the new divisor 2147 and the new remainder 295, and apply the division lemma to get

2147 = 295 x 7 + 82

We consider the new divisor 295 and the new remainder 82,and apply the division lemma to get

295 = 82 x 3 + 49

We consider the new divisor 82 and the new remainder 49,and apply the division lemma to get

82 = 49 x 1 + 33

We consider the new divisor 49 and the new remainder 33,and apply the division lemma to get

49 = 33 x 1 + 16

We consider the new divisor 33 and the new remainder 16,and apply the division lemma to get

33 = 16 x 2 + 1

We consider the new divisor 16 and the new remainder 1,and apply the division lemma to get

16 = 1 x 16 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7031 and 2442 is 1

Notice that 1 = HCF(16,1) = HCF(33,16) = HCF(49,33) = HCF(82,49) = HCF(295,82) = HCF(2147,295) = HCF(2442,2147) = HCF(7031,2442) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7031, 2442 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7031, 2442?

Answer: HCF of 7031, 2442 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7031, 2442 using Euclid's Algorithm?

Answer: For arbitrary numbers 7031, 2442 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.