Highest Common Factor of 7043, 623 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7043, 623 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 7043, 623 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7043, 623 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7043, 623 is 1.

HCF(7043, 623) = 1

HCF of 7043, 623 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7043, 623 is 1.

Highest Common Factor of 7043,623 using Euclid's algorithm

Highest Common Factor of 7043,623 is 1

Step 1: Since 7043 > 623, we apply the division lemma to 7043 and 623, to get

7043 = 623 x 11 + 190

Step 2: Since the reminder 623 ≠ 0, we apply division lemma to 190 and 623, to get

623 = 190 x 3 + 53

Step 3: We consider the new divisor 190 and the new remainder 53, and apply the division lemma to get

190 = 53 x 3 + 31

We consider the new divisor 53 and the new remainder 31,and apply the division lemma to get

53 = 31 x 1 + 22

We consider the new divisor 31 and the new remainder 22,and apply the division lemma to get

31 = 22 x 1 + 9

We consider the new divisor 22 and the new remainder 9,and apply the division lemma to get

22 = 9 x 2 + 4

We consider the new divisor 9 and the new remainder 4,and apply the division lemma to get

9 = 4 x 2 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7043 and 623 is 1

Notice that 1 = HCF(4,1) = HCF(9,4) = HCF(22,9) = HCF(31,22) = HCF(53,31) = HCF(190,53) = HCF(623,190) = HCF(7043,623) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7043, 623 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7043, 623?

Answer: HCF of 7043, 623 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7043, 623 using Euclid's Algorithm?

Answer: For arbitrary numbers 7043, 623 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.