Highest Common Factor of 706, 916, 676, 877 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 706, 916, 676, 877 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 706, 916, 676, 877 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 706, 916, 676, 877 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 706, 916, 676, 877 is 1.

HCF(706, 916, 676, 877) = 1

HCF of 706, 916, 676, 877 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 706, 916, 676, 877 is 1.

Highest Common Factor of 706,916,676,877 using Euclid's algorithm

Highest Common Factor of 706,916,676,877 is 1

Step 1: Since 916 > 706, we apply the division lemma to 916 and 706, to get

916 = 706 x 1 + 210

Step 2: Since the reminder 706 ≠ 0, we apply division lemma to 210 and 706, to get

706 = 210 x 3 + 76

Step 3: We consider the new divisor 210 and the new remainder 76, and apply the division lemma to get

210 = 76 x 2 + 58

We consider the new divisor 76 and the new remainder 58,and apply the division lemma to get

76 = 58 x 1 + 18

We consider the new divisor 58 and the new remainder 18,and apply the division lemma to get

58 = 18 x 3 + 4

We consider the new divisor 18 and the new remainder 4,and apply the division lemma to get

18 = 4 x 4 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 706 and 916 is 2

Notice that 2 = HCF(4,2) = HCF(18,4) = HCF(58,18) = HCF(76,58) = HCF(210,76) = HCF(706,210) = HCF(916,706) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 676 > 2, we apply the division lemma to 676 and 2, to get

676 = 2 x 338 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 676 is 2

Notice that 2 = HCF(676,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 877 > 2, we apply the division lemma to 877 and 2, to get

877 = 2 x 438 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 877 is 1

Notice that 1 = HCF(2,1) = HCF(877,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 706, 916, 676, 877 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 706, 916, 676, 877?

Answer: HCF of 706, 916, 676, 877 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 706, 916, 676, 877 using Euclid's Algorithm?

Answer: For arbitrary numbers 706, 916, 676, 877 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.