Highest Common Factor of 7065, 4685 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7065, 4685 i.e. 5 the largest integer that leaves a remainder zero for all numbers.

HCF of 7065, 4685 is 5 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7065, 4685 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7065, 4685 is 5.

HCF(7065, 4685) = 5

HCF of 7065, 4685 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7065, 4685 is 5.

Highest Common Factor of 7065,4685 using Euclid's algorithm

Highest Common Factor of 7065,4685 is 5

Step 1: Since 7065 > 4685, we apply the division lemma to 7065 and 4685, to get

7065 = 4685 x 1 + 2380

Step 2: Since the reminder 4685 ≠ 0, we apply division lemma to 2380 and 4685, to get

4685 = 2380 x 1 + 2305

Step 3: We consider the new divisor 2380 and the new remainder 2305, and apply the division lemma to get

2380 = 2305 x 1 + 75

We consider the new divisor 2305 and the new remainder 75,and apply the division lemma to get

2305 = 75 x 30 + 55

We consider the new divisor 75 and the new remainder 55,and apply the division lemma to get

75 = 55 x 1 + 20

We consider the new divisor 55 and the new remainder 20,and apply the division lemma to get

55 = 20 x 2 + 15

We consider the new divisor 20 and the new remainder 15,and apply the division lemma to get

20 = 15 x 1 + 5

We consider the new divisor 15 and the new remainder 5,and apply the division lemma to get

15 = 5 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 7065 and 4685 is 5

Notice that 5 = HCF(15,5) = HCF(20,15) = HCF(55,20) = HCF(75,55) = HCF(2305,75) = HCF(2380,2305) = HCF(4685,2380) = HCF(7065,4685) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7065, 4685 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7065, 4685?

Answer: HCF of 7065, 4685 is 5 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7065, 4685 using Euclid's Algorithm?

Answer: For arbitrary numbers 7065, 4685 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.