Highest Common Factor of 7068, 1213 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7068, 1213 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 7068, 1213 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7068, 1213 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7068, 1213 is 1.

HCF(7068, 1213) = 1

HCF of 7068, 1213 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7068, 1213 is 1.

Highest Common Factor of 7068,1213 using Euclid's algorithm

Highest Common Factor of 7068,1213 is 1

Step 1: Since 7068 > 1213, we apply the division lemma to 7068 and 1213, to get

7068 = 1213 x 5 + 1003

Step 2: Since the reminder 1213 ≠ 0, we apply division lemma to 1003 and 1213, to get

1213 = 1003 x 1 + 210

Step 3: We consider the new divisor 1003 and the new remainder 210, and apply the division lemma to get

1003 = 210 x 4 + 163

We consider the new divisor 210 and the new remainder 163,and apply the division lemma to get

210 = 163 x 1 + 47

We consider the new divisor 163 and the new remainder 47,and apply the division lemma to get

163 = 47 x 3 + 22

We consider the new divisor 47 and the new remainder 22,and apply the division lemma to get

47 = 22 x 2 + 3

We consider the new divisor 22 and the new remainder 3,and apply the division lemma to get

22 = 3 x 7 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7068 and 1213 is 1

Notice that 1 = HCF(3,1) = HCF(22,3) = HCF(47,22) = HCF(163,47) = HCF(210,163) = HCF(1003,210) = HCF(1213,1003) = HCF(7068,1213) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7068, 1213 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7068, 1213?

Answer: HCF of 7068, 1213 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7068, 1213 using Euclid's Algorithm?

Answer: For arbitrary numbers 7068, 1213 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.