Highest Common Factor of 708, 999, 259 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 708, 999, 259 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 708, 999, 259 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 708, 999, 259 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 708, 999, 259 is 1.

HCF(708, 999, 259) = 1

HCF of 708, 999, 259 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 708, 999, 259 is 1.

Highest Common Factor of 708,999,259 using Euclid's algorithm

Highest Common Factor of 708,999,259 is 1

Step 1: Since 999 > 708, we apply the division lemma to 999 and 708, to get

999 = 708 x 1 + 291

Step 2: Since the reminder 708 ≠ 0, we apply division lemma to 291 and 708, to get

708 = 291 x 2 + 126

Step 3: We consider the new divisor 291 and the new remainder 126, and apply the division lemma to get

291 = 126 x 2 + 39

We consider the new divisor 126 and the new remainder 39,and apply the division lemma to get

126 = 39 x 3 + 9

We consider the new divisor 39 and the new remainder 9,and apply the division lemma to get

39 = 9 x 4 + 3

We consider the new divisor 9 and the new remainder 3,and apply the division lemma to get

9 = 3 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 708 and 999 is 3

Notice that 3 = HCF(9,3) = HCF(39,9) = HCF(126,39) = HCF(291,126) = HCF(708,291) = HCF(999,708) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 259 > 3, we apply the division lemma to 259 and 3, to get

259 = 3 x 86 + 1

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 1 and 3, to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 259 is 1

Notice that 1 = HCF(3,1) = HCF(259,3) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 708, 999, 259 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 708, 999, 259?

Answer: HCF of 708, 999, 259 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 708, 999, 259 using Euclid's Algorithm?

Answer: For arbitrary numbers 708, 999, 259 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.