Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7113, 1457 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 7113, 1457 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 7113, 1457 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 7113, 1457 is 1.
HCF(7113, 1457) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 7113, 1457 is 1.
Step 1: Since 7113 > 1457, we apply the division lemma to 7113 and 1457, to get
7113 = 1457 x 4 + 1285
Step 2: Since the reminder 1457 ≠ 0, we apply division lemma to 1285 and 1457, to get
1457 = 1285 x 1 + 172
Step 3: We consider the new divisor 1285 and the new remainder 172, and apply the division lemma to get
1285 = 172 x 7 + 81
We consider the new divisor 172 and the new remainder 81,and apply the division lemma to get
172 = 81 x 2 + 10
We consider the new divisor 81 and the new remainder 10,and apply the division lemma to get
81 = 10 x 8 + 1
We consider the new divisor 10 and the new remainder 1,and apply the division lemma to get
10 = 1 x 10 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7113 and 1457 is 1
Notice that 1 = HCF(10,1) = HCF(81,10) = HCF(172,81) = HCF(1285,172) = HCF(1457,1285) = HCF(7113,1457) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 7113, 1457?
Answer: HCF of 7113, 1457 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 7113, 1457 using Euclid's Algorithm?
Answer: For arbitrary numbers 7113, 1457 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.