Highest Common Factor of 7130, 5536 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7130, 5536 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 7130, 5536 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7130, 5536 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7130, 5536 is 2.

HCF(7130, 5536) = 2

HCF of 7130, 5536 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7130, 5536 is 2.

Highest Common Factor of 7130,5536 using Euclid's algorithm

Highest Common Factor of 7130,5536 is 2

Step 1: Since 7130 > 5536, we apply the division lemma to 7130 and 5536, to get

7130 = 5536 x 1 + 1594

Step 2: Since the reminder 5536 ≠ 0, we apply division lemma to 1594 and 5536, to get

5536 = 1594 x 3 + 754

Step 3: We consider the new divisor 1594 and the new remainder 754, and apply the division lemma to get

1594 = 754 x 2 + 86

We consider the new divisor 754 and the new remainder 86,and apply the division lemma to get

754 = 86 x 8 + 66

We consider the new divisor 86 and the new remainder 66,and apply the division lemma to get

86 = 66 x 1 + 20

We consider the new divisor 66 and the new remainder 20,and apply the division lemma to get

66 = 20 x 3 + 6

We consider the new divisor 20 and the new remainder 6,and apply the division lemma to get

20 = 6 x 3 + 2

We consider the new divisor 6 and the new remainder 2,and apply the division lemma to get

6 = 2 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 7130 and 5536 is 2

Notice that 2 = HCF(6,2) = HCF(20,6) = HCF(66,20) = HCF(86,66) = HCF(754,86) = HCF(1594,754) = HCF(5536,1594) = HCF(7130,5536) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7130, 5536 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7130, 5536?

Answer: HCF of 7130, 5536 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7130, 5536 using Euclid's Algorithm?

Answer: For arbitrary numbers 7130, 5536 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.