Highest Common Factor of 715, 989 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 715, 989 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 715, 989 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 715, 989 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 715, 989 is 1.

HCF(715, 989) = 1

HCF of 715, 989 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 715, 989 is 1.

Highest Common Factor of 715,989 using Euclid's algorithm

Highest Common Factor of 715,989 is 1

Step 1: Since 989 > 715, we apply the division lemma to 989 and 715, to get

989 = 715 x 1 + 274

Step 2: Since the reminder 715 ≠ 0, we apply division lemma to 274 and 715, to get

715 = 274 x 2 + 167

Step 3: We consider the new divisor 274 and the new remainder 167, and apply the division lemma to get

274 = 167 x 1 + 107

We consider the new divisor 167 and the new remainder 107,and apply the division lemma to get

167 = 107 x 1 + 60

We consider the new divisor 107 and the new remainder 60,and apply the division lemma to get

107 = 60 x 1 + 47

We consider the new divisor 60 and the new remainder 47,and apply the division lemma to get

60 = 47 x 1 + 13

We consider the new divisor 47 and the new remainder 13,and apply the division lemma to get

47 = 13 x 3 + 8

We consider the new divisor 13 and the new remainder 8,and apply the division lemma to get

13 = 8 x 1 + 5

We consider the new divisor 8 and the new remainder 5,and apply the division lemma to get

8 = 5 x 1 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 715 and 989 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(8,5) = HCF(13,8) = HCF(47,13) = HCF(60,47) = HCF(107,60) = HCF(167,107) = HCF(274,167) = HCF(715,274) = HCF(989,715) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 715, 989 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 715, 989?

Answer: HCF of 715, 989 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 715, 989 using Euclid's Algorithm?

Answer: For arbitrary numbers 715, 989 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.