Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7153, 4952 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 7153, 4952 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 7153, 4952 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 7153, 4952 is 1.
HCF(7153, 4952) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 7153, 4952 is 1.
Step 1: Since 7153 > 4952, we apply the division lemma to 7153 and 4952, to get
7153 = 4952 x 1 + 2201
Step 2: Since the reminder 4952 ≠ 0, we apply division lemma to 2201 and 4952, to get
4952 = 2201 x 2 + 550
Step 3: We consider the new divisor 2201 and the new remainder 550, and apply the division lemma to get
2201 = 550 x 4 + 1
We consider the new divisor 550 and the new remainder 1, and apply the division lemma to get
550 = 1 x 550 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7153 and 4952 is 1
Notice that 1 = HCF(550,1) = HCF(2201,550) = HCF(4952,2201) = HCF(7153,4952) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 7153, 4952?
Answer: HCF of 7153, 4952 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 7153, 4952 using Euclid's Algorithm?
Answer: For arbitrary numbers 7153, 4952 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.