Highest Common Factor of 7170, 5507 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7170, 5507 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 7170, 5507 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7170, 5507 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7170, 5507 is 1.

HCF(7170, 5507) = 1

HCF of 7170, 5507 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7170, 5507 is 1.

Highest Common Factor of 7170,5507 using Euclid's algorithm

Highest Common Factor of 7170,5507 is 1

Step 1: Since 7170 > 5507, we apply the division lemma to 7170 and 5507, to get

7170 = 5507 x 1 + 1663

Step 2: Since the reminder 5507 ≠ 0, we apply division lemma to 1663 and 5507, to get

5507 = 1663 x 3 + 518

Step 3: We consider the new divisor 1663 and the new remainder 518, and apply the division lemma to get

1663 = 518 x 3 + 109

We consider the new divisor 518 and the new remainder 109,and apply the division lemma to get

518 = 109 x 4 + 82

We consider the new divisor 109 and the new remainder 82,and apply the division lemma to get

109 = 82 x 1 + 27

We consider the new divisor 82 and the new remainder 27,and apply the division lemma to get

82 = 27 x 3 + 1

We consider the new divisor 27 and the new remainder 1,and apply the division lemma to get

27 = 1 x 27 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7170 and 5507 is 1

Notice that 1 = HCF(27,1) = HCF(82,27) = HCF(109,82) = HCF(518,109) = HCF(1663,518) = HCF(5507,1663) = HCF(7170,5507) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7170, 5507 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7170, 5507?

Answer: HCF of 7170, 5507 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7170, 5507 using Euclid's Algorithm?

Answer: For arbitrary numbers 7170, 5507 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.