Highest Common Factor of 718, 908 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 718, 908 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 718, 908 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 718, 908 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 718, 908 is 2.

HCF(718, 908) = 2

HCF of 718, 908 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 718, 908 is 2.

Highest Common Factor of 718,908 using Euclid's algorithm

Highest Common Factor of 718,908 is 2

Step 1: Since 908 > 718, we apply the division lemma to 908 and 718, to get

908 = 718 x 1 + 190

Step 2: Since the reminder 718 ≠ 0, we apply division lemma to 190 and 718, to get

718 = 190 x 3 + 148

Step 3: We consider the new divisor 190 and the new remainder 148, and apply the division lemma to get

190 = 148 x 1 + 42

We consider the new divisor 148 and the new remainder 42,and apply the division lemma to get

148 = 42 x 3 + 22

We consider the new divisor 42 and the new remainder 22,and apply the division lemma to get

42 = 22 x 1 + 20

We consider the new divisor 22 and the new remainder 20,and apply the division lemma to get

22 = 20 x 1 + 2

We consider the new divisor 20 and the new remainder 2,and apply the division lemma to get

20 = 2 x 10 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 718 and 908 is 2

Notice that 2 = HCF(20,2) = HCF(22,20) = HCF(42,22) = HCF(148,42) = HCF(190,148) = HCF(718,190) = HCF(908,718) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 718, 908 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 718, 908?

Answer: HCF of 718, 908 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 718, 908 using Euclid's Algorithm?

Answer: For arbitrary numbers 718, 908 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.