Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 722, 387, 420 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 722, 387, 420 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 722, 387, 420 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 722, 387, 420 is 1.
HCF(722, 387, 420) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 722, 387, 420 is 1.
Step 1: Since 722 > 387, we apply the division lemma to 722 and 387, to get
722 = 387 x 1 + 335
Step 2: Since the reminder 387 ≠ 0, we apply division lemma to 335 and 387, to get
387 = 335 x 1 + 52
Step 3: We consider the new divisor 335 and the new remainder 52, and apply the division lemma to get
335 = 52 x 6 + 23
We consider the new divisor 52 and the new remainder 23,and apply the division lemma to get
52 = 23 x 2 + 6
We consider the new divisor 23 and the new remainder 6,and apply the division lemma to get
23 = 6 x 3 + 5
We consider the new divisor 6 and the new remainder 5,and apply the division lemma to get
6 = 5 x 1 + 1
We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get
5 = 1 x 5 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 722 and 387 is 1
Notice that 1 = HCF(5,1) = HCF(6,5) = HCF(23,6) = HCF(52,23) = HCF(335,52) = HCF(387,335) = HCF(722,387) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 420 > 1, we apply the division lemma to 420 and 1, to get
420 = 1 x 420 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 420 is 1
Notice that 1 = HCF(420,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 722, 387, 420?
Answer: HCF of 722, 387, 420 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 722, 387, 420 using Euclid's Algorithm?
Answer: For arbitrary numbers 722, 387, 420 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.