Highest Common Factor of 722, 733, 486, 47 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 722, 733, 486, 47 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 722, 733, 486, 47 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 722, 733, 486, 47 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 722, 733, 486, 47 is 1.

HCF(722, 733, 486, 47) = 1

HCF of 722, 733, 486, 47 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 722, 733, 486, 47 is 1.

Highest Common Factor of 722,733,486,47 using Euclid's algorithm

Highest Common Factor of 722,733,486,47 is 1

Step 1: Since 733 > 722, we apply the division lemma to 733 and 722, to get

733 = 722 x 1 + 11

Step 2: Since the reminder 722 ≠ 0, we apply division lemma to 11 and 722, to get

722 = 11 x 65 + 7

Step 3: We consider the new divisor 11 and the new remainder 7, and apply the division lemma to get

11 = 7 x 1 + 4

We consider the new divisor 7 and the new remainder 4,and apply the division lemma to get

7 = 4 x 1 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 722 and 733 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(7,4) = HCF(11,7) = HCF(722,11) = HCF(733,722) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 486 > 1, we apply the division lemma to 486 and 1, to get

486 = 1 x 486 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 486 is 1

Notice that 1 = HCF(486,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 47 > 1, we apply the division lemma to 47 and 1, to get

47 = 1 x 47 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 47 is 1

Notice that 1 = HCF(47,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 722, 733, 486, 47 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 722, 733, 486, 47?

Answer: HCF of 722, 733, 486, 47 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 722, 733, 486, 47 using Euclid's Algorithm?

Answer: For arbitrary numbers 722, 733, 486, 47 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.