Highest Common Factor of 723, 5608 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 723, 5608 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 723, 5608 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 723, 5608 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 723, 5608 is 1.

HCF(723, 5608) = 1

HCF of 723, 5608 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 723, 5608 is 1.

Highest Common Factor of 723,5608 using Euclid's algorithm

Highest Common Factor of 723,5608 is 1

Step 1: Since 5608 > 723, we apply the division lemma to 5608 and 723, to get

5608 = 723 x 7 + 547

Step 2: Since the reminder 723 ≠ 0, we apply division lemma to 547 and 723, to get

723 = 547 x 1 + 176

Step 3: We consider the new divisor 547 and the new remainder 176, and apply the division lemma to get

547 = 176 x 3 + 19

We consider the new divisor 176 and the new remainder 19,and apply the division lemma to get

176 = 19 x 9 + 5

We consider the new divisor 19 and the new remainder 5,and apply the division lemma to get

19 = 5 x 3 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 723 and 5608 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(19,5) = HCF(176,19) = HCF(547,176) = HCF(723,547) = HCF(5608,723) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 723, 5608 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 723, 5608?

Answer: HCF of 723, 5608 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 723, 5608 using Euclid's Algorithm?

Answer: For arbitrary numbers 723, 5608 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.