Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 724, 394 i.e. 2 the largest integer that leaves a remainder zero for all numbers.
HCF of 724, 394 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 724, 394 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 724, 394 is 2.
HCF(724, 394) = 2
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 724, 394 is 2.
Step 1: Since 724 > 394, we apply the division lemma to 724 and 394, to get
724 = 394 x 1 + 330
Step 2: Since the reminder 394 ≠ 0, we apply division lemma to 330 and 394, to get
394 = 330 x 1 + 64
Step 3: We consider the new divisor 330 and the new remainder 64, and apply the division lemma to get
330 = 64 x 5 + 10
We consider the new divisor 64 and the new remainder 10,and apply the division lemma to get
64 = 10 x 6 + 4
We consider the new divisor 10 and the new remainder 4,and apply the division lemma to get
10 = 4 x 2 + 2
We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get
4 = 2 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 724 and 394 is 2
Notice that 2 = HCF(4,2) = HCF(10,4) = HCF(64,10) = HCF(330,64) = HCF(394,330) = HCF(724,394) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 724, 394?
Answer: HCF of 724, 394 is 2 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 724, 394 using Euclid's Algorithm?
Answer: For arbitrary numbers 724, 394 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.