Highest Common Factor of 724, 461, 417, 814 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 724, 461, 417, 814 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 724, 461, 417, 814 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 724, 461, 417, 814 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 724, 461, 417, 814 is 1.

HCF(724, 461, 417, 814) = 1

HCF of 724, 461, 417, 814 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 724, 461, 417, 814 is 1.

Highest Common Factor of 724,461,417,814 using Euclid's algorithm

Highest Common Factor of 724,461,417,814 is 1

Step 1: Since 724 > 461, we apply the division lemma to 724 and 461, to get

724 = 461 x 1 + 263

Step 2: Since the reminder 461 ≠ 0, we apply division lemma to 263 and 461, to get

461 = 263 x 1 + 198

Step 3: We consider the new divisor 263 and the new remainder 198, and apply the division lemma to get

263 = 198 x 1 + 65

We consider the new divisor 198 and the new remainder 65,and apply the division lemma to get

198 = 65 x 3 + 3

We consider the new divisor 65 and the new remainder 3,and apply the division lemma to get

65 = 3 x 21 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 724 and 461 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(65,3) = HCF(198,65) = HCF(263,198) = HCF(461,263) = HCF(724,461) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 417 > 1, we apply the division lemma to 417 and 1, to get

417 = 1 x 417 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 417 is 1

Notice that 1 = HCF(417,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 814 > 1, we apply the division lemma to 814 and 1, to get

814 = 1 x 814 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 814 is 1

Notice that 1 = HCF(814,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 724, 461, 417, 814 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 724, 461, 417, 814?

Answer: HCF of 724, 461, 417, 814 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 724, 461, 417, 814 using Euclid's Algorithm?

Answer: For arbitrary numbers 724, 461, 417, 814 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.