Highest Common Factor of 726, 401, 628, 12 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 726, 401, 628, 12 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 726, 401, 628, 12 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 726, 401, 628, 12 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 726, 401, 628, 12 is 1.

HCF(726, 401, 628, 12) = 1

HCF of 726, 401, 628, 12 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 726, 401, 628, 12 is 1.

Highest Common Factor of 726,401,628,12 using Euclid's algorithm

Highest Common Factor of 726,401,628,12 is 1

Step 1: Since 726 > 401, we apply the division lemma to 726 and 401, to get

726 = 401 x 1 + 325

Step 2: Since the reminder 401 ≠ 0, we apply division lemma to 325 and 401, to get

401 = 325 x 1 + 76

Step 3: We consider the new divisor 325 and the new remainder 76, and apply the division lemma to get

325 = 76 x 4 + 21

We consider the new divisor 76 and the new remainder 21,and apply the division lemma to get

76 = 21 x 3 + 13

We consider the new divisor 21 and the new remainder 13,and apply the division lemma to get

21 = 13 x 1 + 8

We consider the new divisor 13 and the new remainder 8,and apply the division lemma to get

13 = 8 x 1 + 5

We consider the new divisor 8 and the new remainder 5,and apply the division lemma to get

8 = 5 x 1 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 726 and 401 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(8,5) = HCF(13,8) = HCF(21,13) = HCF(76,21) = HCF(325,76) = HCF(401,325) = HCF(726,401) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 628 > 1, we apply the division lemma to 628 and 1, to get

628 = 1 x 628 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 628 is 1

Notice that 1 = HCF(628,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 12 > 1, we apply the division lemma to 12 and 1, to get

12 = 1 x 12 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 12 is 1

Notice that 1 = HCF(12,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 726, 401, 628, 12 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 726, 401, 628, 12?

Answer: HCF of 726, 401, 628, 12 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 726, 401, 628, 12 using Euclid's Algorithm?

Answer: For arbitrary numbers 726, 401, 628, 12 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.