Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 728, 244, 353, 671 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 728, 244, 353, 671 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 728, 244, 353, 671 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 728, 244, 353, 671 is 1.
HCF(728, 244, 353, 671) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 728, 244, 353, 671 is 1.
Step 1: Since 728 > 244, we apply the division lemma to 728 and 244, to get
728 = 244 x 2 + 240
Step 2: Since the reminder 244 ≠ 0, we apply division lemma to 240 and 244, to get
244 = 240 x 1 + 4
Step 3: We consider the new divisor 240 and the new remainder 4, and apply the division lemma to get
240 = 4 x 60 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 728 and 244 is 4
Notice that 4 = HCF(240,4) = HCF(244,240) = HCF(728,244) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 353 > 4, we apply the division lemma to 353 and 4, to get
353 = 4 x 88 + 1
Step 2: Since the reminder 4 ≠ 0, we apply division lemma to 1 and 4, to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4 and 353 is 1
Notice that 1 = HCF(4,1) = HCF(353,4) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 671 > 1, we apply the division lemma to 671 and 1, to get
671 = 1 x 671 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 671 is 1
Notice that 1 = HCF(671,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 728, 244, 353, 671?
Answer: HCF of 728, 244, 353, 671 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 728, 244, 353, 671 using Euclid's Algorithm?
Answer: For arbitrary numbers 728, 244, 353, 671 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.