Highest Common Factor of 729, 999, 454 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 729, 999, 454 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 729, 999, 454 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 729, 999, 454 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 729, 999, 454 is 1.

HCF(729, 999, 454) = 1

HCF of 729, 999, 454 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 729, 999, 454 is 1.

Highest Common Factor of 729,999,454 using Euclid's algorithm

Highest Common Factor of 729,999,454 is 1

Step 1: Since 999 > 729, we apply the division lemma to 999 and 729, to get

999 = 729 x 1 + 270

Step 2: Since the reminder 729 ≠ 0, we apply division lemma to 270 and 729, to get

729 = 270 x 2 + 189

Step 3: We consider the new divisor 270 and the new remainder 189, and apply the division lemma to get

270 = 189 x 1 + 81

We consider the new divisor 189 and the new remainder 81,and apply the division lemma to get

189 = 81 x 2 + 27

We consider the new divisor 81 and the new remainder 27,and apply the division lemma to get

81 = 27 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 27, the HCF of 729 and 999 is 27

Notice that 27 = HCF(81,27) = HCF(189,81) = HCF(270,189) = HCF(729,270) = HCF(999,729) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 454 > 27, we apply the division lemma to 454 and 27, to get

454 = 27 x 16 + 22

Step 2: Since the reminder 27 ≠ 0, we apply division lemma to 22 and 27, to get

27 = 22 x 1 + 5

Step 3: We consider the new divisor 22 and the new remainder 5, and apply the division lemma to get

22 = 5 x 4 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 27 and 454 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(22,5) = HCF(27,22) = HCF(454,27) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 729, 999, 454 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 729, 999, 454?

Answer: HCF of 729, 999, 454 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 729, 999, 454 using Euclid's Algorithm?

Answer: For arbitrary numbers 729, 999, 454 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.