Highest Common Factor of 730, 8611 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 730, 8611 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 730, 8611 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 730, 8611 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 730, 8611 is 1.

HCF(730, 8611) = 1

HCF of 730, 8611 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 730, 8611 is 1.

Highest Common Factor of 730,8611 using Euclid's algorithm

Highest Common Factor of 730,8611 is 1

Step 1: Since 8611 > 730, we apply the division lemma to 8611 and 730, to get

8611 = 730 x 11 + 581

Step 2: Since the reminder 730 ≠ 0, we apply division lemma to 581 and 730, to get

730 = 581 x 1 + 149

Step 3: We consider the new divisor 581 and the new remainder 149, and apply the division lemma to get

581 = 149 x 3 + 134

We consider the new divisor 149 and the new remainder 134,and apply the division lemma to get

149 = 134 x 1 + 15

We consider the new divisor 134 and the new remainder 15,and apply the division lemma to get

134 = 15 x 8 + 14

We consider the new divisor 15 and the new remainder 14,and apply the division lemma to get

15 = 14 x 1 + 1

We consider the new divisor 14 and the new remainder 1,and apply the division lemma to get

14 = 1 x 14 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 730 and 8611 is 1

Notice that 1 = HCF(14,1) = HCF(15,14) = HCF(134,15) = HCF(149,134) = HCF(581,149) = HCF(730,581) = HCF(8611,730) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 730, 8611 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 730, 8611?

Answer: HCF of 730, 8611 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 730, 8611 using Euclid's Algorithm?

Answer: For arbitrary numbers 730, 8611 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.