Highest Common Factor of 733, 924, 337, 949 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 733, 924, 337, 949 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 733, 924, 337, 949 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 733, 924, 337, 949 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 733, 924, 337, 949 is 1.

HCF(733, 924, 337, 949) = 1

HCF of 733, 924, 337, 949 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 733, 924, 337, 949 is 1.

Highest Common Factor of 733,924,337,949 using Euclid's algorithm

Highest Common Factor of 733,924,337,949 is 1

Step 1: Since 924 > 733, we apply the division lemma to 924 and 733, to get

924 = 733 x 1 + 191

Step 2: Since the reminder 733 ≠ 0, we apply division lemma to 191 and 733, to get

733 = 191 x 3 + 160

Step 3: We consider the new divisor 191 and the new remainder 160, and apply the division lemma to get

191 = 160 x 1 + 31

We consider the new divisor 160 and the new remainder 31,and apply the division lemma to get

160 = 31 x 5 + 5

We consider the new divisor 31 and the new remainder 5,and apply the division lemma to get

31 = 5 x 6 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 733 and 924 is 1

Notice that 1 = HCF(5,1) = HCF(31,5) = HCF(160,31) = HCF(191,160) = HCF(733,191) = HCF(924,733) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 337 > 1, we apply the division lemma to 337 and 1, to get

337 = 1 x 337 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 337 is 1

Notice that 1 = HCF(337,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 949 > 1, we apply the division lemma to 949 and 1, to get

949 = 1 x 949 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 949 is 1

Notice that 1 = HCF(949,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 733, 924, 337, 949 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 733, 924, 337, 949?

Answer: HCF of 733, 924, 337, 949 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 733, 924, 337, 949 using Euclid's Algorithm?

Answer: For arbitrary numbers 733, 924, 337, 949 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.