Highest Common Factor of 7341, 6311 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 7341, 6311 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 7341, 6311 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 7341, 6311 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 7341, 6311 is 1.

HCF(7341, 6311) = 1

HCF of 7341, 6311 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 7341, 6311 is 1.

Highest Common Factor of 7341,6311 using Euclid's algorithm

Highest Common Factor of 7341,6311 is 1

Step 1: Since 7341 > 6311, we apply the division lemma to 7341 and 6311, to get

7341 = 6311 x 1 + 1030

Step 2: Since the reminder 6311 ≠ 0, we apply division lemma to 1030 and 6311, to get

6311 = 1030 x 6 + 131

Step 3: We consider the new divisor 1030 and the new remainder 131, and apply the division lemma to get

1030 = 131 x 7 + 113

We consider the new divisor 131 and the new remainder 113,and apply the division lemma to get

131 = 113 x 1 + 18

We consider the new divisor 113 and the new remainder 18,and apply the division lemma to get

113 = 18 x 6 + 5

We consider the new divisor 18 and the new remainder 5,and apply the division lemma to get

18 = 5 x 3 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7341 and 6311 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(18,5) = HCF(113,18) = HCF(131,113) = HCF(1030,131) = HCF(6311,1030) = HCF(7341,6311) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 7341, 6311 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 7341, 6311?

Answer: HCF of 7341, 6311 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 7341, 6311 using Euclid's Algorithm?

Answer: For arbitrary numbers 7341, 6311 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.