Highest Common Factor of 737, 5739, 9920 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 737, 5739, 9920 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 737, 5739, 9920 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 737, 5739, 9920 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 737, 5739, 9920 is 1.

HCF(737, 5739, 9920) = 1

HCF of 737, 5739, 9920 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 737, 5739, 9920 is 1.

Highest Common Factor of 737,5739,9920 using Euclid's algorithm

Highest Common Factor of 737,5739,9920 is 1

Step 1: Since 5739 > 737, we apply the division lemma to 5739 and 737, to get

5739 = 737 x 7 + 580

Step 2: Since the reminder 737 ≠ 0, we apply division lemma to 580 and 737, to get

737 = 580 x 1 + 157

Step 3: We consider the new divisor 580 and the new remainder 157, and apply the division lemma to get

580 = 157 x 3 + 109

We consider the new divisor 157 and the new remainder 109,and apply the division lemma to get

157 = 109 x 1 + 48

We consider the new divisor 109 and the new remainder 48,and apply the division lemma to get

109 = 48 x 2 + 13

We consider the new divisor 48 and the new remainder 13,and apply the division lemma to get

48 = 13 x 3 + 9

We consider the new divisor 13 and the new remainder 9,and apply the division lemma to get

13 = 9 x 1 + 4

We consider the new divisor 9 and the new remainder 4,and apply the division lemma to get

9 = 4 x 2 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 737 and 5739 is 1

Notice that 1 = HCF(4,1) = HCF(9,4) = HCF(13,9) = HCF(48,13) = HCF(109,48) = HCF(157,109) = HCF(580,157) = HCF(737,580) = HCF(5739,737) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 9920 > 1, we apply the division lemma to 9920 and 1, to get

9920 = 1 x 9920 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 9920 is 1

Notice that 1 = HCF(9920,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 737, 5739, 9920 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 737, 5739, 9920?

Answer: HCF of 737, 5739, 9920 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 737, 5739, 9920 using Euclid's Algorithm?

Answer: For arbitrary numbers 737, 5739, 9920 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.