Highest Common Factor of 739, 413 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 739, 413 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 739, 413 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 739, 413 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 739, 413 is 1.

HCF(739, 413) = 1

HCF of 739, 413 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 739, 413 is 1.

Highest Common Factor of 739,413 using Euclid's algorithm

Highest Common Factor of 739,413 is 1

Step 1: Since 739 > 413, we apply the division lemma to 739 and 413, to get

739 = 413 x 1 + 326

Step 2: Since the reminder 413 ≠ 0, we apply division lemma to 326 and 413, to get

413 = 326 x 1 + 87

Step 3: We consider the new divisor 326 and the new remainder 87, and apply the division lemma to get

326 = 87 x 3 + 65

We consider the new divisor 87 and the new remainder 65,and apply the division lemma to get

87 = 65 x 1 + 22

We consider the new divisor 65 and the new remainder 22,and apply the division lemma to get

65 = 22 x 2 + 21

We consider the new divisor 22 and the new remainder 21,and apply the division lemma to get

22 = 21 x 1 + 1

We consider the new divisor 21 and the new remainder 1,and apply the division lemma to get

21 = 1 x 21 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 739 and 413 is 1

Notice that 1 = HCF(21,1) = HCF(22,21) = HCF(65,22) = HCF(87,65) = HCF(326,87) = HCF(413,326) = HCF(739,413) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 739, 413 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 739, 413?

Answer: HCF of 739, 413 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 739, 413 using Euclid's Algorithm?

Answer: For arbitrary numbers 739, 413 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.